

Emory University, Atlanta, GA

A more resilient campus through water reuse

An on-site eco-engineered water reclamation plant reduces campus water use by nearly 40% - minimizing the University's environmental impact.

n the last decade, Atlanta has witnessed numerous waterrelated stresses, including: severe drought, EPA mandates to resolve critical infrastructure failures, and an extended political dispute over water rights in the so-called "Tri-State Water Wars." As a result of these challenges, Emory

This is a first of

its kind facility in

exemplifies how we

as a society can take a more intelligent and

stewardship of natural

responsible path to

resources.

Emory University

University set out to explore ways to minimize its impact on community water resources and the environment. Using close to 350 million gallons annually,

the University deployed water conservation tactics ranging from low-flow fixtures to stormwater reuse. As regional water stresses persisted, the campus turned to a more strategic and impactful water management solution: campus-wide water reclamation and reuse.

With an extensive district energy system supplying steam heat and chilled water to campus, the University has significant process water demands that equate to nearly 40% of campus water use. A majority (85%) of this water is used by the steam plant and five campus chiller plants. These utility plants provide an ideal opportunity for displacing a significant portion of the campus

potable water footprint with a reliable and sustainable source of water.

Sustainable Water designed Emory's reclamation system to integrate into the existing campus framework using two small parcels near Chappell Park field. Up to 400,000 gallons of waste-

water is mined directly out of the campus sewer system daily. Water is cleaned to Georgia reclaimed water standards through an energy efficient, eco-engineered treatment process supported by solar (PV) energy production. The system has 50,000 gallons of clean water storage capacity, providing N+1 redundancy for campus district energy systems. Recycled water is distributed to multiple utility plants and select dormitories for toilet flushing via a 4,400 linear foot "purple pipe" distribution system. At full build-out, the system will displace nearly 105 million gallons of potable water annually.

The system is designed to promote research and community outreach, enhancing the concept of the campus as a "living laboratory." With built-in lab space and easy access ports for water quality testing, the facility enables research in a variety of topics. The lower site also includes a demonstration reciprocating wetland system as a showcase to visitors interested in other sustainable treatment technologies.

The region has committed to a very robust plan for water conservation, water efficiency and reuse. This project clearly demonstrates how recycling our treated wastewater and appropriately reusing it will extend our resilience and free up water for future generations and other beneficial purposes."

Douglas Hooker Executive Director Atlanta Regional Commission

Location Atlanta, Georgia

Project

Domestic Sanitary Wastewater Reclamation & Reuse

Project Timeline 2015

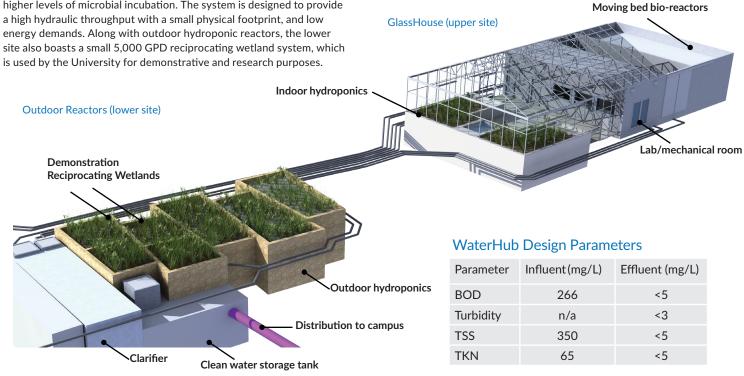
Footprint 3,000 ft² GlassHouse 1,500 ft² Outdoor landscaping

Hydraulic Capacity 400,000 gallons per day

End Uses

Boiler Make-up Cooling Tower Make-up Toilet Flushing

Technologies Applied Hydroponic w/ Submerged Fixed-Film Reactors Reciprocating Wetlands (Demo)



Technology Description

he WaterHub at Emory is an adaptive ecological water reclamation system designed to treat domestic sanitary sewage for beneficial reuse. Wastewater is mined from a 18" sewer line near the lower site and then pumped to the upper site where it enters a rotating drum screen before entering the moving-bed bioreactor (MBBR) system. The process design combines submerged fixed-film hydroponic reactors with a MBBR as an initial treatment step. After primary treatment, water passes through a small clarifier, a disk filter, and a dual-stage disinfection system consisting of ultraviolet (UV) light and an oxidizing agent (chlorine).

The hydroponic reactors utilize plants and the second and maximize natural treatment efficiencies associated with oxygen he hydroponic reactors utilize plants and their root systems to mimic diffusion and habitat creation. Below the root zone is an artificial media, called BioWeb, that extends the submerged fixed-film surface area for higher levels of microbial incubation. The system is designed to provide a high hydraulic throughput with a small physical footprint, and low energy demands. Along with outdoor hydroponic reactors, the lower site also boasts a small 5,000 GPD reciprocating wetland system, which

Cooling towers at Michael St. Chiller Plant now receive reclaimed water

Lower Site: outdoor hydroponics and demonstration reciprocating wetlands

4860 Cox Road, Suite 120 Richmond, VA 23060

Office: 804.965.5590

www.sustainablewater.com

