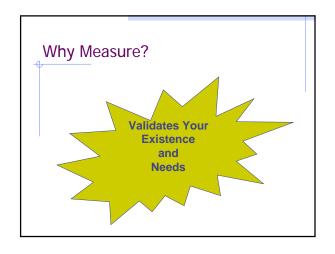
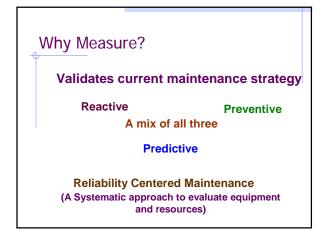
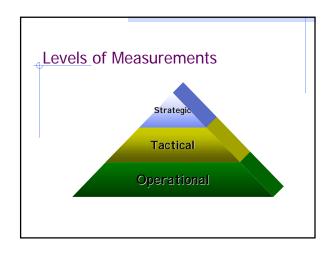

The Proof is in the Pudding and Pay me now, or pay me later?

Presented by: Gary Merrow Turner Facilities Management Solutions

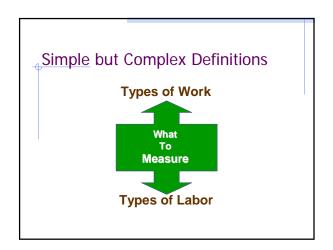



Pudding and CMMS?

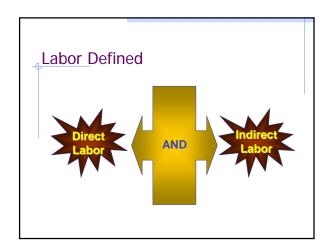

Pudding is Simple

So Lets Keep Facility Maintenance
Simple

And Keep the Measurements
Simple

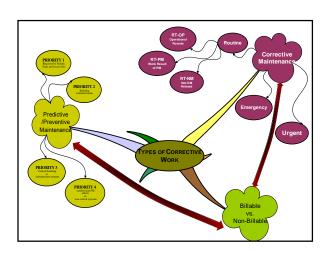


Operational Measurements


If you can't measure it, you can't improve it!

"Trust but verify, and don't be afraid to see what you see." Ronald Reagan

In God we trust, all others bring data!


Manpower Estimate Exercise

Per	sonnel	Time Sta	ndards	
	BELOW AVERAGE	AVERAGE	ABOVE AVERAGE	WORLD CLASS
AVAILABLE HOURS PER YEAR	2080	2080	2080	2080
HOLIDAYS2/HRS/YR	96	88	88	88
DAY EQUIVALENTS	12	11	11	11
VACATIONS HRS/YR	120	104	104	104
DAY EQUIVALENTS	15	13	13	13
ABSENTEEISM HRS/YR	104	83.2	72.8	62.4
% OF TOTAL TIME	0.05	0.04	0.035	0.03
MEETINGS/ TRAINING HRS/YR	41.6	104	114.4	124.8
% OF TOTAL TIME	0.02	0.05	0.055	0.06
BREAKS .5/D HRS/YR	142.2	118.5	118.5	118.5
% OF TOTAL TIME	0.6	0.5	0.5	0.5
CLEANUP HRS/YR	711	474	237	118.5
HRS/DAY	3	2	1	0.5
TOTAL DL WORK HOURS/YEAR	865.2	1108.3	1345.3	1463.8
% OF TOTAL DL AVAILABLE TIME	41.60%	53.28%	64.68%	70.38%

Types of Work - What is maintenance?

- Dictionary defines as the work of keeping something in proper condition; upkeep.
- Not actions associated with equipment repair AFTER it is broken.

The Three Week Window Plan: What's coming up next week?

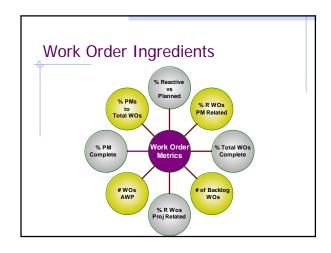
- ♦ Review staffing for upcoming week.
- Schedule direct and indirect hours.
- Schedule PM work orders early in week.
- ♦Schedule back-log work orders.

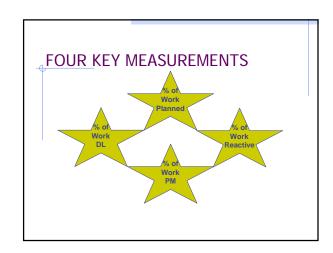
	LABOR CODES		<u>J. B</u>	aga	Week of:				
		Sch.	Sch.	Sch.	Sch.	Sch.	Sch.	Sch.	Sch.
	LUC	MON	TUE	WED	THU	FRI	SAT	SUN	TOTALS
DIRECT LABOR									
REGULAR	11								0
OVERTIME	12								0
TOTAL DL	13	0	0	0	0	0	0	0	0
INDIRECT LABOR									
SUPERVISION	14								0
VACATION	15								0
SICK	16								0
TRAINING	17								
BRK/MET	21								0
TOTAL IDL	25	0	0	0	0	0	0	0	0

DIN (DO-IT-NOW)									
EMERGENCY	35								0
URGENT	36								0
PM#	38								0
PM#	38								0
TOTAL PM HOURS	38	0	0	0	0	0	0	0	0
WO#	37								0
WO#	37								0
TOTAL WO HOURS	37	0	0	0	0	0	0	0	0
TOTAL HOURS (B)	40	0	0	0	0	0	0	0	0
VERIFY HOURS		T	T	Т	Т	Т	T	T	T

The Three Week Window Plan:

What's happening this week to affect next week?


- Review what is happening this week workwise that may affect next week's schedule.
 - Unusual weather creating large number of seasonal calls?
 - Major equipment outage affecting this week's PM schedule?
 - Unplanned absences from maintenance staff?
- Decide how to handle PM work orders that will not be accomplished.


The Three Week Window Plan: How did we do last week?

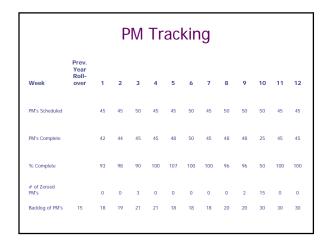
- Review how well you did last week.
 - Planned vs. actual
 - Percent completed work
 - Emergency
 - Urgent
 - Routine
 - Preventive Maintenance
 - Other indicators to support maintenance goals and objectives

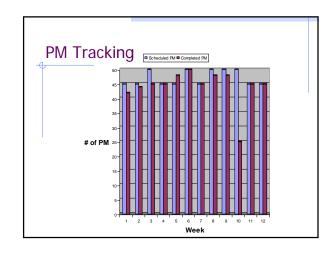
The Weekly Scheduling Meeting

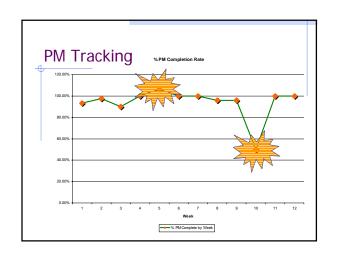
- Should include Director of Maintenance, Maintenance Supervisors, Planners, and CMMS Supervisor
- Review the Three Week Window
- Ensure goals and objectives are being met
- Action plans to eliminate or soften potential problems
- Roll Zone / Shops / Central Plant to "One Big Picture" for Tactical or Strategic level Leader

Determining What to PM

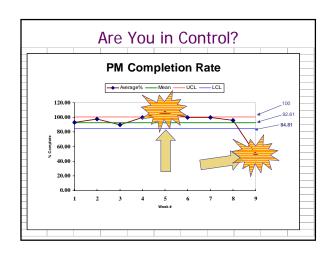
What is the mission of your organization? Universities whose primary focus is research will differ from a two-year preparatory school. Research hospitals will differ from general hospitals.

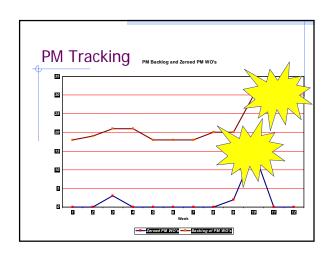

The biggest "score card issue" is how your measurable objectives support strategic goals of both Plant and the organization.

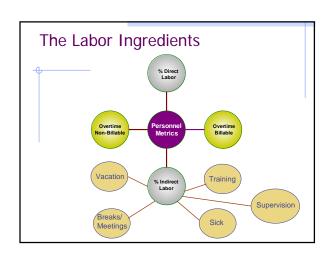

Determining What to PM

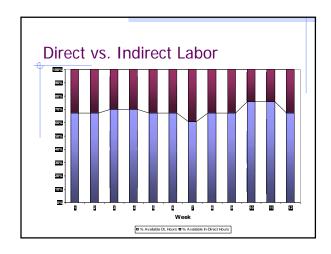

- Code Required: Items requiring inspection, maintenance, or replacement as stated by law, statute, or governing body's recommendation.
- ◆ Code Recommended: The "should" versus the "shall." Items that should be inspected, possible life safety or component damage could occur, but generally left up to the discretion of the Maintenance Organization.

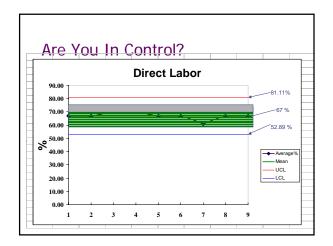
	Determining What to PM										
SYSTEM	SUB SYSTEM	Monthly	Quarterly	Semi- Annual	Annual	Other	Code Reference				
Fire alarm							NEPA 72, CHPT				
system	Alarm panel				Х		7, TABLE 7-2.2				
	Battery backup	х		х			NFPA 72, CHPT 7, TABLE 7-3.1				
	Heat detectors				х		NFPA 72, CHPT 7, TABLE 7-2.2				
	Smoke detectors				х		NFPA 72, CHPT 7, TABLE 7-2.2				
Air distribution systems	Fire, Smoke, and Ceiling Dampers					x	NFPA 90A, B-2				
	Ductwork		х			х	NFPA 90A, B-4				
	Filters					х	NFPA 90A, B-3				
	Plenums	х				х	NFPA 90A, B-5				
Waste water systems	Sump pump systems			х	х						
	Sewage ejector systems			х	х						
	Septic tanks					х					


			T	1
	BELOW AVERAGE	AVERAGE	ABOVE AVERAGE	WORLD CLASS
PERCENT TIME ACCOMPLISHING PM WORK	10.00%	20.00%	30.00%	40.00%
HOURS PM WORK/PERSON /YEAR	86.52	221.66	403.59	585.52
PERCENT TIME ACCOMPLISHING REACTIVE WORK	35.00%	30.00%	25.00%	20.00%
HOURS EMERGENCY WORK/PERSON /YEAR	302.82	332.49	336.33	292.76
PERCENT TIME ACCOMPLISHING PLANNED WORK	55.00%	50.00%	45.00%	40.00%
HOURS CORRECTIVE WORK/PERSON/YR	475.86	554.15	605.385	585.52






Used to monitor a process to see whether it is in statistical control. What does a Control Chart tell me? Upper control limits (UCL) and lower control limits (LCL) indicate how much variance is typical for the process. If out of control, look for the iwhyî.



Per	50	HH	ei i	vie	uic	5						
Week	1	2	3	4	5	6	7	8	9	10	11	12
Direct Hours Available	188	188	196	196	188	188	170	188	188	212	212	188
OT Hours Utilized	0	0	10	0	0	0	20	0	0	40	40	0
Total Hours Available	188	188	206	196	188	188	190	188	188	252	252	188
ID - Supervision	31.5	40	24	32	40	32	32	40	32	16	16	40
ID - Brks/Meetings	52.5	52	44	44	46	52	38	52	52	52	52	52
ID - Vacation	0	0	8	0	0	8	16	0	0	0	0	0
ID - Training	0	0	0	0	6	0	0	0	6	0	0	0
ID - Sick	8	0	8	8	0	0	24	0	2	0	0	0
In-Direct Hours	92	92	84	84	92	92	110	92	92	68	68	92
% Available DL Hours	67%	67%	70%	70%	67%	67%	61%	67%	67%	76%	76%	67%
% Available In- Direct Hours	33%	33%	30%	30%	33%	33%	39%	33%	33%	24%	24%	33%
% of OT Hours	0%	0%	5%	0%	0%	0%	11%	0%	0%	16%	16%	0%

Summary

Identified why we should measure and at what level

Defined some simple yet complex terms

Looked at ingredients and their measurements

Reviewed options that the data gives us

We agree Pudding is Simple

Lets keep Facility Maintenance Simple!

Pay me now, or pay me later? Justifying a PM Program in Uncertain Economic Times

Roadmap

- ♦ The burning "Why?"
- Quantify the value of a PPM program
- What to Measure?
 - Define Maintenance
 - Reliability Centered Maintenance
 - What data to gather and why
- The process
- Conclusion What are you waiting for?

The burning "Why?"

- ♦\$800 million a year is spent on facility or plant maintenance nationwide
- ♦ Proper PM could save up to 40 to 60 percent
- Predominant Mode of Maintenance in US:
 - >55% Reactive
 - 31% Preventive
 - 12% Predictive
 - 2% Other

The burning "Why?"

A Georgia Example:

Medium sized university = 3,000,000 GSF of space

Funded from Board of Regents @ \$5.75 per SF

After utilities, custodial, and other costs funding arrives @ \$1.85 per SF

Actual O&M Funding = \$5,550,000

The burning "Why?"

A Georgia Example:

Assumption ñ Some PM but mostly Reactive

Increase amount of current PM efforts to proper amount

Assumption ñ Save 30% of O&M Budget

Savings = \$1,665,000

So why donit we perform the proper level of PM?

Quantify the value of Preventive Maintenance

They say:

ìThe equipment will perform better.î ìEquipment life will be extended.î

ìRepair costs will fall.î

ìDowntime will be reduced.î

ìCustomer satisfaction will increase.î

ìThe manufacture says we need to

We say:

ìlf it ainít broke, donít fix it.î

ìEquipment is designed today to run with less maintenance efforts.î

ilnitial repair costs will increase î

ìCanít shut down equipment during

ìCustomer mindset ñ what have you done for me lately?

ìThe manufacturer is just practicing CYA.î

Quantify the value of Preventive Maintenance

Identify ì itî

Identify the i shalli versus the i shouldi

Develop a financial model:

Quantify Net Present Value and Return on Investment for the recommended equipment in the PM program

Establish a baseline ñ What do you actually spend on PM?

Define Maintenance

Definition of maintenance based on reactive environment?

Fix it AFTER it breaks!

Dictionary definition of maintenance?

The work of keeping something in proper condition; upkeep.

So lay-persons term of a maintenance program?

Keeping the equipment running as designed, with an effort to keeping it from breaking before it was designed to break.

Types of Maintenance - Keep it Simple

- Preventive Maintenance
- Reactive Maintenance
 - Emergency
 - Urgent
 - Routine
 - Routine from PM or PDM
- Predictive Maintenance
- ♦ The Goal: Find the proper balance of the three types

Reliability Centered Maintenance

- A balance of the three types of Maintenance against available resources
- Targets should be based on what you PM as defined by the Financial Model + available resources
- Suggested:
 - < 10 to 15 percent Reactive</p>
 - 20 to 40 percent Preventive
 - 45 to 55 percent Predictive

What to Measure – Data Gathering

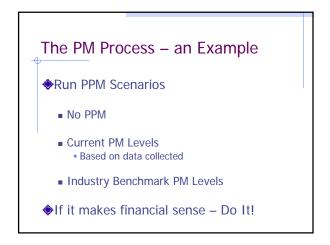
- PPM WOs Labor
- PPM WOS Materials
- ♦ WOs generated from PPM WOs
- All other WOs
 - Emergency, Urgent, Routine
- Renewal and Replacement Projects

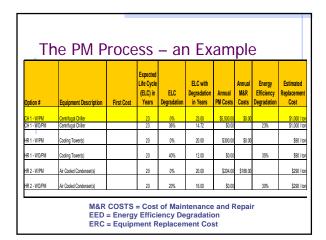
What to Measure – from Gathered Data

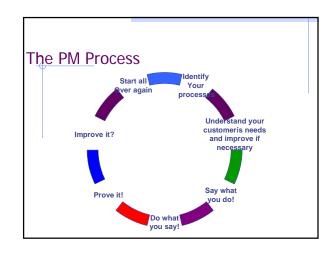
- % of Types of Maintenance performed
- Annual Cost per SF for PPMs and Minor Repair from PPMs
- Annual Cost for Unscheduled Maintenance per SF
- Annual Cost for Renewal & Replacement per SF
- Totaled should provide Annual M&R Costs per SF

The PM Process

- ◆Identify "it"
- Determine the shall vs. the should
- Determine the criticality
- Quantify the value of the equipment to PM


The PM Process


- Quantify the value of the equipment to PM
 - Must know current actual cost of preventive maintenance
 - Must know current actual cost of repair / corrective maintenance
 - Determine the cost of replacing equipment
 - Determine Life Cycle of equipment

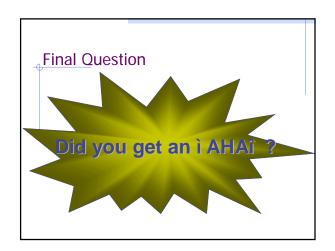

The PM Process

- Quantify the value of the equipment to PM
 - Ascertain effects of PM on Life Cycle of equipment (manufactures data)
 - Expected frequency of repairs when equipment is not properly maintained (manufactures data, Whitestone, R.S. MEANS)
 - Estimated effect of PM on energy consumption
- Does it make financial sense to perform PM on that piece of equipment?

The Pl	M Pro	cess	– an	Examp	le	
Forder and Tona	Life Cycle	LOD	Cookin DM	Cook of DOM		EDO
Equipment Type	(LC)	LCD	Cost to PM	Cost of R&M	EED	ERC
Air Compressor	20	20%	\$472.00	\$236.00	35%	\$4,700/HP
Centrifugal Chiller	23	36%	\$5,500.00	\$0.00	23%	\$1,000/Ton
Fire Pump	30	20%	\$1,650.00	\$891.00	N/A	\$40,000/Sys
Roof	20	25%	\$0.12 SF	\$0.00	N/A	\$10.00 SF
	EED = En	&M = Cos ergy Effic			Economic Value	of Preventive Maintenancei

Conclusion – What are you waiting for?

The burning "Why?"


How to quantify the value of a PPM program

What to measure?

Defined Maintenance
Defined Reliability Centered Maintenance
Identified what data to gather and why

Discussed the process

Conclusion – One last question

